Cut Elimination in Deduction Modulo by Abstract Completion (Full Version)
نویسندگان
چکیده
Deduction Modulo implements Poincaré’s principle by identifying deduction and computation as different paradigms and making their interaction possible. This leads to logical systems like the sequent calculus or natural deduction modulo. Even if deduction modulo is logically equivalent to first-order logic, proofs in such systems are quite different and dramatically simpler with one cost: cut elimination may not hold anymore. We prove first that it is even undecidable to know, given a congruence over propositions, if cuts can be eliminated in the sequent calculus modulo this congruence. Second, to recover the cut admissibility, we show how computation rules can be added following the classical idea of completion a la Knuth and Bendix. Because in deduction modulo, rewriting acts on terms as well as on propositions, the objects are much more elaborated than for standard completion. Under appropriate hypothesis, we prove that the sequent calculus modulo is an instance of the powerful framework of abstract canonical systems and that therefore, cuts correspond to critical proofs that abstract completion allows us to eliminate. In addition to an original and deep understanding of the interactions between deduction and computation and of the expressivity of abstract canonical systems, this provides a mechanical way to transform a sequent calculus modulo into an equivalent one admitting the cut rule, therefore extending in a significant way the applicability of mechanized proof search in deduction modulo.
منابع مشابه
Cut Elimination in Deduction Modulo by Abstract Completion
Deduction Modulo implements Poincaré’s principle by identifying deduction and computation as different paradigms and making their interaction possible. This leads to logical systems like the sequent calculus or natural deduction modulo. Even if deduction modulo has been shown to be logically equivalent to first-order logic, proofs in such systems are quite different and dramatically simpler wit...
متن کاملRegaining cut admissibility in deduction modulo using abstract completion
Deduction modulo is a way to combine computation and deduction in proofs, by applying the inference rules of a deductive system (e.g. natural deduction or sequent calculus) modulo some congruence that we assume here to be presented by a set of rewrite rules. Using deduction modulo is equivalent to proving in a theory corresponding to the rewrite rules, and leads to proofs that are often shorter...
متن کاملPushdown systems in Polarized deduction modulo
We introduce a new saturation method for polarized rewrite systems and prove a cut-elimination theorem for the Polarized sequent calculus modulo a saturated rewrite system. As a corollary of this cut-elimination theorem, we obtain the decidability of reachability in alternating pushdown systems.
متن کاملSemantic A-translation and Super-consistency entail Classical Cut Elimination
We show that if a theory R defined by a rewrite system is super-consistent, the classical sequent calculus modulo R enjoys the cut elimination property, which was an open question. For such theories it was already known that proofs strongly normalize in natural deduction modulo R, and that cut elimination holds in the intuitionistic sequent calculus modulo R. We first define a syntactic and a s...
متن کاملA Semantic Proof that Reducibility Candidates entail Cut Elimination
Two main lines have been adopted to prove the cut elimination theorem: the syntactic one, that studies the process of reducing cuts, and the semantic one, that consists in interpreting a sequent in some algebra and extracting from this interpretation a cut-free proof of this very sequent. A link between those two methods was exhibited by studying in a semantic way, syntactical tools that allow ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007